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Calculus of Variations
From Calculus of Variations to Optimal Control

Definition (Calculus of Variations)

Let X denotes some infinite dimensional space, a calculus of variations problem can be
defined as:

inf
x∈X

J [x] =

∫ b

a
L(u, x(u), x ′(u))du

x = {x(u) : u ∈ [a, b]}
(1)

where J[x] : X −→ R is the functional integrating from time u = a to time u = b,
L(u, x(u), x ′(u)) defines the Lagrangian cost (e.g. L = ∥x ′(u)∥22) and x defines the
general curve indexed by time u.
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Euler-Lagrange Equations
From Calculus of Variations to Optimal Control

Theorem (Euler-Lagrange Equations)

Let x be an extremum of Eq. 1. Then, x satisfies the Euler-Lagrange Equations:

∂xL(u, x(u), x
′(u)) =

d

du
∂x ′L(u, x(u), x

′(u)), u ∈ [a, b]. (2)
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Proof of Euler-Lagrange Equations
From Calculus of Variations to Optimal Control

Proof.

Let us firstly Taylor expands the functional J [x ] as

δJ =

∫ b

a

(
∂L

∂u
δu +

∂L

∂u̇
δu̇

)
dt

The term involving δu̇ can be integrated by parts. Recall that δu̇ = d
dt (δu), so:∫ b

a

∂L

∂u̇
δu̇ dt =

[
∂L

∂u̇
δu

]b
a

−
∫ b

a

d

dt

(
∂L

∂u̇

)
δu dt

Assume that the variations δu(t) vanish at the endpoints, i.e., δu(a) = δu(b) = 0.

δJ =

∫ b

a

(
∂L

∂u
− d

dt

(
∂L

∂u̇

))
δu dt
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Proof of Euler-Lagrange Equations
From Calculus of Variations to Optimal Control

Proof.

If we want the variation δJ reduces to 0, we have to let the integration part to be 0 as:

∂L

∂u
− d

dt

(
∂L

∂u̇

)
= 0

This is the Euler-Lagrange equation:

∂xL(u, x(u), x
′(u)) =

d

du
∂x ′L(u, x(u), x

′(u)), u ∈ [a, b]. (3)

6 / 26



Differential Dynamics
From Calculus of Variations to Optimal Control

Definition (Differential Dynamics defined by ODE)

Let t denotes the system time, x(t) ∈ Rd denotes the state, θ(t) ∈ Θ ⊂ Rm denotes
the control signal, we can define a trajectory defined by the following ODE:

ẋ(t) = f (t, x(t),θ(t)), t ∈ [t0, t1], x(t0) = x0, (4)

where x0 denotes the given starting state.
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The Bolza Problem of Optimal Control
From Calculus of Variations to Optimal Control

Definition (The Bolza Problem of Optimal Control)

inf
θ
J [θ] =

∫ t1

t0

L(t, x(t),θ(t))dt +Φ(t1, x(t1))

s.t. ẋ(t) = f (t, x(t),θ(t)), t ∈ [t0, t1], x(t0) = x0,

(5)

where L : R× Rd ×Θ −→ R and Φ : R× Rd −→ R are called the running cost and
the terminal cost, respectively.

Remark.

For historical reasons, the case where Φ = 0 (no terminal cost) is called a Lagrange
problem, where as the case with L = 0 (no running cost) is called a Mayer problem.

8 / 26



Outline

From Calculus of Variations to Optimal Control

Pontryagin’s Maximum Principle (PMP)

Dynamic Programming Principle (DPP)

Model Predictive Control

Take Home Messages

Reference

9 / 26



The Maximum Principle
Pontryagin’s Maximum Principle (PMP)

Definition (Hamiltonian)

Let us define the Hamiltonian functional H : R× Rd × Rd ×Θ −→ R as:

H(t, x,p,θ) = p⊤f (t, x,θ)− L(t, x,θ) (6)

Theorem (Pontryagin’s Maximum Principle)

Let θ∗ be a bounded, measurable and admissible control, and x∗ be its corresponding
state. Then, there exists an a.c. process p∗ = {p∗(t) : t ∈ [t0, t1]} such that

ẋ∗(t) = ∇pH(t, x∗(t),p∗(t),θ∗(t)), x∗(t0) = x0

ṗ∗(t) = −∇xH(t, x∗(t),p∗(t),θ∗(t)), p∗(t1) = −∇xΦ(x
∗(t1))

H(t, x∗(t),p∗(t),θ∗(t)) ≥ H(t, x∗(t),p∗(t),θ(t)), ∀θ ∈ Θ and t ∈ [t0, t1]

(7)
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Some Remarks about the PMP
Pontryagin’s Maximum Principle (PMP)

Remark.

Pontryagin’s Maximum Principle(PMP) can be treated as the necessary condition for
optimality. The co-state p is to propagate back the optimality condition and is the
adjoint of the variational equation. In fact, one can also connect the co-state formally
to a Lagrange multiplier enforcing the constraint of the ODE. One can regard the
PMP as a nontrivial generalization of the Euler-Lagrange equations to handle strong
extrema, as well as a generalization of the KKT conditions to non-smooth settings.
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Proof of the PMP
Pontryagin’s Maximum Principle (PMP)

Lemma (Dependence on Initial Condition)

Given the time-inhomogeneous ODE as

ẋ(t) = f (t, x(t)), x(0) = x0, (8)

we can define the permutation v as the solution to the initial permutation v0:

v̇(s) = ∇xf (s, x(s))v(s), v(0) = v0. (9)
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Proof of the PMP
Pontryagin’s Maximum Principle (PMP)

Proof.

Step1: Convert to Mayer Problem.
By going one dimension higher we can rewrite Eq. 5 as the Mayer problem

inf
θ
J [θ] = Φ(t1, x(t1)) + y(t1), t ∈ [t0, t1],

s.t. ẋ(t) = f (t, x(t),θ(t)), x(t0) = x0,

ẏ(t) = L(t, x(t),θ(t)), y(t0) = 0.

(10)

For the simplicity, we will only consider this general Mayer problem.

inf
θ
J [θ] = Φ̄(t1, x̄(t1)), t ∈ [t0, t1],

s.t. ˙̄x(t) = f̄ (t, x̄(t),θ(t)), x̄(t0) = x̄0.
(11)
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Proof of the PMP
Pontryagin’s Maximum Principle (PMP)

Proof.

Step 2: Needle Perturbation.
Fix τ > 0 and an admissible control s ∈ Θ. Define the needle perturbation to the
optimal control

θϵ(t) =

{
s, if t ∈ [τ − ϵ, τ ],

θ∗(t), otherwise
(10)

Let xϵ(t) be the corresponding controlled trajectory, i.e., the solution of

ẋϵ(t) = f (t, xϵ(t),θϵ(t)), xϵ(t0) = x0. (11)

Our goal is to derive necessary conditions for which any such needle perturbation will
be sub-optimal, thus resulting in a necessary condition for a strong minimum in the
cost functional.
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Proof of the PMP
Pontryagin’s Maximum Principle (PMP)

Proof.

Step 3: Variational Equation.
It is clear that xϵ(t) = x∗(t) for t ≤ τ − ϵ. Let us define, for t ≥ τ

v(t) := lim
ϵ→0+

xϵ(t)− x∗(t)

ϵ
. (10)

This measures the propagation of the effect of the needle perturbation as time
increases. In particular, at t = τ , v(τ) is the tangent vector of the curve ϵ 7→ xϵ(τ),
given by

v(τ) = lim
ϵ→0+

(
1

ϵ

∫ τ

τ−ϵ
f (t, xϵ(t), s)dt −

1

ϵ

∫ τ

τ−ϵ
f (t, x∗(t),θ∗(t))dt

)
= f (τ, x∗(τ), s)− f (τ, x∗(τ),θ∗(τ)).

(11)
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Proof of the PMP
Pontryagin’s Maximum Principle (PMP)

Proof.

For the remaining time t ∈ [τ, t1], xϵ follows the same ODE in Eq. 9.

v̇(t) = ∇xf (t, x
∗(t),θ∗(t))v(t), t ∈ [τ, t1], (10)

with initial condition given by v(τ). In particular, the vector v(t1) describes the
variation in the end point xϵ(t1) due to the needle perturbation v(τ).
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Proof of the PMP
Pontryagin’s Maximum Principle (PMP)

Proof.

Step 4: Optimality Condition at End Point.
By our assumption, the control θ∗ is optimal, hence we must have

Φ(x∗(t1)) ≤ Φ(xϵ(t1)). (10)

Thus, we have

0 ≤ lim
ϵ→0+

Φ(xϵ(t1))− Φ(x∗(t1))

ϵ
=

d

dϵ
Φ(xϵ(t1))

∣∣∣∣
ϵ=0+

= ∇Φ(x∗(t1)) · v(t1). (11)

In fact, the inequality (2.28) holds for any τ and s that characterizes the needle
perturbation.
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Proof of the PMP
Pontryagin’s Maximum Principle (PMP)

Proof.

Step 5: The Adjoint Equation and the Maximum Principle.
To this end, we define p∗(t) as the solution of the backward Cauchy problem

ṗ∗(t) = −∇xf (t, x
∗(t),θ∗(t))⊤p∗(t), p∗(t1) = −∇Φ(x∗(t1)). (10)

Then, observe that we indeed have

d

dt
[p∗(t)⊤v(t)] = 0 ∀t ∈ [τ, t1] =⇒ p∗(τ)⊤v(τ) = p∗(t1)

⊤v(t1) ≤ 0, (11)

which implies that for any τ ∈ (t0, t1] we have

[p∗(τ)]⊤f (τ, x∗(τ), s) ≥ [p∗(τ)]⊤f (τ, x∗(τ),θ∗(τ)) ∀s ∈ Θ. (12)

By continuity this also holds for t = t0.
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Proof of the PMP
Pontryagin’s Maximum Principle (PMP)

Proof.

By undoing the conversion in Step 1, we can go back to a general Bolza problem by
sending p̄∗ → (p∗, p∗y ). In particular, observe that p∗y (t1) = −1 and

ṗ∗y (t) = −∇yL(t, x(t),θ(t))⊤p∗y (t) = 0. Hence, p∗y (t) ≡ −1. Hence, we get from the
optimality condition that

p∗(τ)⊤f (τ, x∗(τ),θ∗(τ))− L(τ, x∗(τ),θ∗(τ)) ≥ p∗(τ)⊤f (τ, x∗(τ), s)− L(τ, x∗(τ), s),
(10)

where p∗ satisfies the adjoint equation

ṗ∗(t) = −∇xH(t, x∗(t),p∗(t),θ∗(t)), p∗(t1) = −∇Φ(x∗(t1)). (11)
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The Dynamic Programming Principle
Dynamic Programming Principle (DPP)

Definition (Value Function)

The value function V : [t0, t1]× Rd −→ R is the minimum cost attainable starting
from the initial state z at time s.

V (s, z) = inf
θ

∫ t1

s
L(t, x(t),θ(t))dt +Φ(t1, x(t1))

s.t. ẋ(t) = f (t, x(t),θ(t)), t ∈ [s, t1], x(s) = z,

(12)

Theorem (Dynamic Programming Principle)

For every τ, s ∈ [t0, t1], s ≤ τ , and z ∈ Rd , we have

V (s, z) = inf
θ

{∫ τ

s
L(t, x(t),θ(t))dt + V (τ, x(τ))

}
s.t. ẋ(t) = f (t, x(t),θ(t)), t ∈ [s, τ ], x(s) = z,

(13)
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Some Remarks about the DPP
Dynamic Programming Principle (DPP)

Remark.

The meaning of the DPP is that the optimization problem defining V (s, z) can be split
into two parts:
1. First, solve the optimization problem on [τ, t1] with the usual running cost L and
terminal cost Θ, but for all initial state z′ ∈ Rd . This gives us the value function
V (τ, ·).
2. Second, solve the optimization problem on [s, τ ] with running cost L and terminal
cost V (τ, ·) given by the step before.
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Hamilton-Jacobi-Bellman Equations
Hamilton-Jacobi-Bellman Equations (HJB)

Theorem (Hamilton-Jacobi-Bellman Equations)

The value function V in Eq. 12 is the unique viscosity solution of the
Hamilton-Jacobi-Bellman equation

∂tV (t, x) + inf
θ

{
L(t, x,θ) + [∇xV (t, x)]⊤ f (t, x,θ)

}
= 0

V (t1, x) = Φ(x), (t, x) ∈ [t0, t1]× Rd
(14)

Remark.

HJB equation establishes the necessary and sufficient conditions for optimal control
problem. Provided we can solve the HJB, the optimal control solution is of feed-back
or closed-loop form, meaning that it tells how to steer the system by just observing the
state trajectory. We can contrast with the PMP, where we obtain open-loop controls
that are pre-computed and cannot be applied on-the-fly.
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Proof of HJB Equations
Hamilton-Jacobi-Bellman Equations (HJB)

Proof.

To begin with, we can derive the infinitesimal version of the dynamic programming
principle defined in Eq. 13. Let τ = s +∆s, then

V (s, z) = inf
θ

{∫ s+∆s

s
L(t, x(t),θ(t))dt + V (s +∆s, x(s +∆s))

}
≈ inf

θ
{L(s, z,θ(s))∆s + V (s +∆s, x(s +∆s))}

≈ inf
θ
{L(s, z,θ(s))∆s + V (s, x(s))

+ ∂sV (s, z)∆s + [∇zV (s, z)]⊤f (s, z,θ(s))∆s}
ẋ(t) = f (t, x(t),θ(t)), t ∈ [s, τ ], x(s) = z

(15)
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Proof of HJB Equations
Hamilton-Jacobi-Bellman Equations (HJB)

Proof.

After cancelling the term V (s, z) on both slides and taking the limit ∆s −→ 0, the
infimum over paths θ on t ∈ [s, s +∆s] becomes an infimum over a scalar θ = θ(s),
thus we obtain the Hamilton-Jacobi-Bellman equation for the value function.

0 = ∂sV (s, z) + inf
θ

{
L(s, z,θ(s)) + [∇zV (s, z)]⊤f (s, z,θ(s))

}
(15)

Then, combine with the boundary condition V (t1, x) = Φ(x), we can result the full
HJB equations.
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The Necessary Condition
Dynamic Programming Principle (DPP)

Proof.

By the assumption of global optimality, we can perform Taylor expanding and
comparing with the usual dynamic programming principle as:

−∂tV (t, x∗) = inf
θ

{
L(t, x∗,θ) + [∇xV (t, x∗)]⊤ f (t, x∗,θ)

}
= L(t, x∗,θ∗) + [∇xV (t, x∗)]⊤ f (t, x∗,θ∗)

(16)

Then, recall the Hamiltonian formulation as

H(t, x,p,θ) = p⊤f (t, x,θ)− L(t, x,θ) (17)

Finally, we can rewrite it as a similar statement of th PMP

H(t, x∗,−∇xV (t, x∗),θ∗) = max
θ

H(t, x∗,−∇xV (t, x∗),θ) (18)
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The Sufficient Condition
Dynamic Programming Principle (DPP)

Proof.

Let us now assume that a continuously differentiable function V satisfies the HJB
equation and moreover that a control θ̂ : [t0, t1] → Θ satisfies

H(t, x̂(t),−∇xV (t, x̂(t)), θ̂(t)) = max
θ∈Θ

H(t, x̂(t),−∇xV (t, x̂(t)),θ), (19)

for all t ∈ [t0, t1], where x̂(t) is the state process corresponding to the control θ̂, then
θ̂ is a globally optimal control that solves the dynamic programming principle with
optimal cost V (t0, x0).
To show this, observe that if we set x = x̂(t) in the HJB equation for V , noting the
condition, we have

∂tV (t, x̂(t)) + [∇xV (t, x̂(t))]T f (t, x̂(t), θ̂(t)) + L(t, x̂(t), θ̂(t)) = 0, (20)
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The Sufficient Condition
Dynamic Programming Principle (DPP)

Proof.

which means
d

dt
V (t, x̂(t)) + L(t, x̂(t), θ̂(t)) = 0. (19)

Integrating from t0 to t1 and using the boundary condition V (t1, x) = Φ(x), we have

V (t0, x0) =

∫ t1

t0

L(t, x̂(t), θ̂(t))dt +Φ(x̂(t1)) = J[θ̂]. (20)

On the other hand, if θ be any other control whose trajectory is x , we would have

∂tV (t, x(t)) + [∇xV (t, x(t))]T f (t, x(t),θ(t)) + L(t, x(t),θ(t)) ≥ 0, (21)
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The Sufficient Condition
Dynamic Programming Principle (DPP)

Proof.

which yields

0 ≤
∫ t1

t0

L(t, x(t),θ(t))dt + V (t1, x(t1))− V (t0, x0), (19)

or
J[θ̂] = V (t0, x0) ≤ J[θ]. (20)

This shows that θ̂ is globally optimal, with cost V (t0, x0).
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Theorems
Take Home Messages

Theorem (Euler-Lagrange Equations)

Let x be an extremum of Eq. 1. Then, x satisfies the Euler-Lagrange Equations:

∂xL(u, x(u), x
′(u)) =

d

du
∂x ′L(u, x(u), x

′(u)), u ∈ [a, b]. (21)

Theorem (Pontryagin’s Maximum Principle)

Let θ∗ be a bounded, measurable and admissible control, and x∗ be its corresponding
state. Then, there exists an a.c. process p∗ = {p∗(t) : t ∈ [t0, t1]} such that

ẋ∗(t) = ∇pH(t, x∗(t),p∗(t),θ∗(t)), x∗(t0) = x0

ṗ∗(t) = −∇xH(t, x∗(t),p∗(t),θ∗(t)), p∗(t1) = −∇xΦ(x
∗(t1))

H(t, x∗(t),p∗(t),θ∗(t)) ≥ H(t, x∗(t),p∗(t),θ(t)), ∀θ ∈ Θ and t ∈ [t0, t1]

(22)
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Theorems
Take Home Messages

Theorem (Hamilton-Jacobi-Bellman Equations)

The value function V in Eq. 12 is the unique viscosity solution of the
Hamilton-Jacobi-Bellman equation

∂tV (t, x) + inf
θ

{
L(t, x,θ) + [∇xV (t, x)]⊤ f (t, x,θ)

}
= 0

V (t1, x) = Φ(x), (t, x) ∈ [t0, t1]× Rd
(21)
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Remarks
Take Home Messages

Remarks on PMP

PMP establishes the necessary conditions for optimal control problem. PMP obtain
open-loop controls that are pre-computed and cannot be applied on-the-fly.

Remarks on HJB

HJB equation establishes the necessary and sufficient conditions for optimal control
problem. Provided we can solve the HJB, the optimal control solution is of feed-back
or closed-loop form, meaning that it tells how to steer the system by just observing the
state trajectory.
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